HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.

- LANGS, D. A. & HARE, C. R. (1967). Chem. Communications, p. 853.
- LARSON, A. C. (1965). Acta Cryst. 18, 717.
- LEUNG, Y. C. & MARSH, R. E. (1958). Acta Cryst. 11, 17.
- OKAYA, Y. (1966). Acta Cryst. 21, 726.

PASCARD-BILLY, C. (1965). Acta Cryst. 18, 827.

- SCHOMAKER, V. & STEVENSON, D. P. (1941). J. Amer. Chem. Soc. 63, 37.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3178.
- TRUTER, M. R. J. (1962). J. Chem. Soc. p. 3400.
- WUDL, F., LIGHTNER, D. A. & CRAM, D. J. (1967). J. Amer. Chem. Soc. 89, 4099.
- ZIMMERMAN, I. C., BARLOW, M. & MCCULLOUGH, J. D. (1963). Acta Cryst. 16, 883.

Acta Cryst. (1969). B25, 354

The Crystal Structures of Nitrates of Divalent Hexaquocations. II. Hexaquomagnesium Nitrate

BY A. BRAIBANT!, A. TIRIPICCHIO, A. M. MANOTTI LANFREDI & F. BIGOLI

Istituto di Chimica Generale, Università di Parma, Italy

(Received 10 November 1967)

The crystals of hexaquomagnesium nitrate are monoclinic, space group $P2_1/c$. The structure, determined from three-dimensional data, consists of hexaquomagnesium cations which are nearly octahedral with Mg-OH_{2av} equal to 2.058 Å and of nitrato groups which are not trigonally symmetric with N-O bond lengths 1.20, 1.25, 1.26 Å. The hexaquocations and the nitrato groups are bound together by hydrogen bonds whose lengths are in the range 2.75-2.90 Å. The differences in the crystal structures of the hexaquozinc nitrate, orthorhombic, and of the hexaquomagnesium nitrate, monoclinic, seem to be related to the different disposition of the hydrogen bonds radiating from the hexaquocations towards the nitrato groups.

Introduction

The hexaquocations of divalent metals are assigned octahedral structures, but small deviations from perfectly cubic symmetry are expected either because of the electronic configuration of the metal cation or because of the strains from the hydrogen bonds in the crystal.

The assessment of the extent of these perturbations is the object of the widely extending structural studies on the compounds of hexaquocations. The hexaquometal (II) nitrates crystallize in several different crystal systems or space groups and it seems to us worth while to endeavour to understand how far this fact is related to the distortions in the octahedral arrangement of the water molecules around the metal. Here are presented the results of the crystal structure determination of the magnesium compound.

Experimental

Preparation

The crystals are obtained by crystallization from aqueous solutions. They are prismatic, highly hygroscopic and, for X-ray work, need to be sealed into capillary tubes.

Crystal data

Hexaquomagnesium nitrate, $[Mg(OH_2)_6](NO_3)_2$; F.W. 256.432.

For the structure determinations we used the refined crystal data of Mozzi & Bekebrede (1961):

 $a = 6 \cdot 194 \pm 0.002, b = 12 \cdot 707 \pm 0.003, c = 6 \cdot 600 \pm 0.002 \text{ Å}$ $\beta = 92 \cdot 99 \pm 0.02^{\circ}, V = 518 \cdot 8 \text{ Å}^3 Z = 2$

 $D_m = 1.636 \text{ g.cm}^{-3}, D_x = 1.641 \text{ g.cm}^{-3}, \mu = 21.45 \text{ cm}^{-1}$ (Cu Ka)

Space group $P2_1/c$ (C⁵_{2h}, No.14) from systematic absences.

Intensity data

Integrated reflexions 0kl, 1kl, 2kl, 3kl, 4kl, 5kl, photographically recorded on a Weissenberg camera, were

Table	1.	Fractional	atomic	coordinates	× 104	(with

	x	У	z
Mg	0000	5000	5000
$H_2O(1)$	-0358(11)	3398 (4)	4764 (13)
$H_2O(2)$	3022 (10)	4805 (5)	4616 (10)
$H_2O(3)$	- 1432 (13)	4993 (¥)	7750 (10)
N(4)	4668 (12)	2040 (4)	5362 (11)
O(5)	6031 (14)	1301 (4)	5330 (12)
O(6)	2814 (15)	1881 (3)	5685 (17)
O(7)	5339 (14)	2962 (4)	5172 (16)

measured by a microdensitometer. Corrections for absorption and for secondary extinction were applied.

All the calculations were performed on the Olivetti Elea computer 6001/S of the Centro di Calcolo Elettronico of the University of Parma.

Determination and refinement of the structure

The structure was solved by Fourier methods and the refinement was carried out by differential syntheses. The anisotropic thermal parameters were refined following the method of Nardelli & Fava (1960).

The final results are quoted in Tables 1–5. (Final $R_{hkl} = 0.156$, observed reflexions only.)

The e.s.d.'s of the fractional coordinates (Table 1) are those obtained from the differential syntheses. For the thermal parameters (Table 2) no significant e.s.d. can be given; the maximum and average shifts of the last cycle are quoted as a rough indication of the fluctuations of the values. On the other hand no definite physical meaning has been attributed to the thermal parameters, which are to be taken as mathematical coefficients comprehensive of several factors, indicating only that the refinement process has converged. One of the factors probably affecting the thermal parameters and the R_{hkl} value as well could be a certain sort of disorder in the crystal, as suggested by diffuse reflexions on the photographs.

	B ₁₁	B_{22}	B ₃₃	B_{12}	B ₁₃	B_{23}
Mg	3.390	2.876	3.551	-0.124	-0.418	0.046
$H_2O(1)$	4.669	3.555	6.411	-0.018	-0.738	-0.026
$H_2O(2)$	3.909	4.305	5.621	0.226	-1.247	-0.289
$H_2O(3)$	5.836	4.385	4.950	-0.001	0.351	-0.151
N(4)	3.487	3.239	4.108	0.259	0.004	0.588
O(5)	5.781	4.966	6.372	1.628	-0.067	0.487
O(6)	4.684	4.504	8.040	0.470	0.554	1.546
O(7)	5.221	4.362	8.709	0.107	0.099	0.455

Table 2. Anisotropic thermal parameters* (Å²)

* In the last cycle for all the atoms the average shift, $|\Delta B_{ij}|_{av}$, and the maximum shift, $|\Delta B_{ij}|_{max}$, were:

 $|\Delta B_{ij}|_{av} = 0.051$ $|\Delta B_{ij}|_{max} = 0.272$

Fig. 1. Clinographic projection of the structure of hexaquomagnesium nitrate.

The differences between observed and calculated values (Table 4) of ϱ, A_{hh}, A_{kk} etc. are small and never exceed twice the e.s.d.'s.

The e.s.d.'s of the interatomic distances and angles (Table 5) were calculated by a program written by Nardelli, Musatti, Domiano & Andreeti (1965) following the method of Darlow & Cochran (1961) for distances and of Darlow (1960) for angles.

Discussion

The structure is represented in Fig.1. The hexaquocations $[Mg(OH_2)_6]^{2+}$ (Fig.2) are centrosymmetric, and nearly octahedral, as shown by the distances Mg–OH₂ 2.053, 2.061, 2.063 Å, and by the angles H₂O–Mg–OH₂, 91.3, 90.7, 90.4°. Distances Mg–OH₂ quoted in the literature for hexaquomagnesium cations are 2.115,

Table 3. Observed and calculated structure factors $10F_o$ followed by=are not observed

00000000000000000000000000000000000000	ħ
0000111111112222222222223333334444444444	¥
246812345678012345678123456780123456780123456781234567801234567123456701234567123456701234567012345612345601234512345	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 <u>F</u> 10
464 C C 645 C C C 779 C C C 789 C C C 799 C C C 790 C C C 791 C C C 792 C C C 793 C C C 793 C C C 793 C C C 714 11 11 11 714 11 11 11 714 11 11 11 714 11 11 11 714 11 11 11 714 11 11 11 714 11 11 11 715 11 15 11 719 12 12 12 715 13 15 13 </td <td>E<u>c</u> 1</td>	E <u>c</u> 1
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	<u>k</u>
01234123010224466850112233445566778801122334455667788011223344556677880112233445566778801122334455667788011223344556677880112233445566	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 <u>F</u> 10 <u>F</u>
0559255146521839881116469719233111137998357689056196203836034052444440781030334882016348820163488767438153280041	<u>c</u> <u>h</u>
	<u>k</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 <u>F</u> 0
31 24 24 24 24 24 25 25 25 22 24 25 25 25 25 25 25 25 25 25 25	10 <u>F</u>
$\begin{smallmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	ħ
223333333333444444444444555555555566660000001111111111	ĸ
٢٠٠٠	<u>1</u>
14-5994337+16-094337+16-094337+16-094337+16-094337+16-094337+16-094337+16-094337+16-094337+16-094337+16-094337+16-09437+16-00437+16-00437+16-00437+16-00437+16-00437+16-00437+16-00437+16-00437+16-00437+16-00437+16-00437+16-00437+16-00437+16-00437+16-00437+16-00437+16-00437+16-00437+16-0043	10 <u>F</u> 0
$\begin{smallmatrix} 5 & 5 & 5 & 6 & 2 \\ -6 & 23 & -1 & -4 & 13 \\ -1 & -4 & 13 & -7 & -4 & -3 \\ -1 & 24 & 5 & -2 & -3 \\ -1 & -4 & -5 & -3 & -6 & -1 \\ -1 & 24 & -5 & -2 & -2 \\ -1 & -2 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 \\ -2 & -2 & -2 & -2 \\ -2 & -2 &$	10 <u>F</u> <u>5</u>
	ħ
$4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ $	<u>k</u> 1
$\begin{array}{c} 471\\ 311\\ 142\\ 27,\\ 77214142\\ 3122\\ 7714142\\ 2122\\ 7714142\\ 2122\\ 21422\\ 21422\\ 21422\\ 21422\\ 21422\\ 21422\\ 21422\\ 21422\\ 21422\\ 21422\\ 21422\\ 21422\\ 21422\\ 2142&2\\ 2142&2\\ 2142&2&2\\ 2142&2&2\\ 2142&2&2&2\\ 2142&2&2&2\\ 2142&2&2&2\\ 2142&2&2&2\\ 2142&2&2&2\\ 2142&2&2&2\\ 2142&2&2&2&2&2\\ 2142&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2&2&2&2\\ 2142&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&$	10 <u>F</u> 0
- 37 20 20 20 20 20 20 20 20 20 20	10 <u>F</u> c
222222222222222222222222222222222222222	ħ
1111111111212121212121212121212121313131313131313131444141515151515151000000001111111111	<u>k 1</u>
$\begin{array}{c} 81\\ 1\\ 1\\ 23\\ 2\\ 3\\ 2\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	10 <u>F</u> o
$\begin{array}{c} -653\\ -272\\ 24\\ 5\\ -193\\ -22\\ -24\\ -35\\ -193\\ -22\\ -24\\ -102\\ -22\\ -22\\ -22\\ -22\\ -22\\ -22\\ -22\\ -$	10 <u>F</u> _
	<u>h</u> !
	<u>. 1</u>
80 80 81 81 82 82 83 83 83 83 83 83 83 83 83 83	10 <u>F</u> 0
$\begin{array}{c} .50\\ -348\\ -211\\ -1220\\ -155\\ -263\\ -202\\ -255\\ -392\\ -278\\ -392\\ -278\\ -392\\ -278\\ -392\\ -278\\ -392\\ -278\\ -392\\ -278\\ -392\\ -278\\ -392\\ -278\\ -392\\ -278\\ -392\\ -278\\ -392\\ -288\\ -392\\$	10 <u>F</u> _

Tal	ble	e 3	(cont.)	
			(

Table 4. Atomic peak heights (e.Å⁻³), curvatures (e.Å⁻⁵) and e.s.d.'s

		Q	$-A_{hh}$	$-A_{kk}$	$-A_{ll}$	Ank	Anı	Aki
Mg	obs. calc.	21·0 21·4	157 159	207 210	194 196	-1 -1		$-6 \\ -8$
H ₂ O(1)	obs.	8·9	58	80	55	0	-4	1
	calc.	8·9	59	80	56	0	-4	2
H ₂ O(2)	obs. calc.	9∙1 9∙1	63 63	68 68	64 65	4 3	10 9	$-1 \\ 0$
H ₂ O(3)	obs.	9∙0	56	72	72	1	5	-4
	calc.	9∙2	57	73	73	0	4	-5
N(4)	obs.	8·0	55	72	62	0	0	10
	calc.	8·2	56	74	61	0	0	9
O(5)	obs. calc.	8·5 8·5	52 54	70 71	58 58	10 8	$-1 \\ -1$	5 5
O(6)	obs.	7·7	52	68	43	1	5	13
	calc.	7·9	52	69	45	0	5	12
O(7)	obs.	7·6	51	70	43	1	1	6
	calc.	7·7	51	70	45	1	1	6
e.s.d.		0.2	1	2	2	1	1	1

2.068, 2.068 (Nardelli, Fava & Giraldi, 1962), 2.054, 2.099, 2.045, 2.046, 2.092, 2.055 (Baur, 1964), 2.046, 2.044, 2.080 (Zalkin, Ruben & Templeton, 1964), 2.054, 2.059, 2.083 (Zalkin, Ruben & Templeton, 1964), 2.081, 2.080, 2.061 (Johnson, 1965), 2.059, 2.061, 2.065 (Sasvari & Jeffrey, 1966), 2.083, 2.073, 2.051 Å (Margulis & Templeton, 1962); within each octahedron the differences, when significant, are very small and not always of the same kind, *i.e.* sometimes they could indicate either tetragonal or asymmetric distortion. Baur (1964) suggests that a possible cause of the asymmetric distortion in MgSO₄.7H₂O is a couple of additional hydrogen bonds directed towards the water molecules in correspondence with the distances Mg-OH₂ equal to 2.099, 2.092 Å. At any rate the deviations in all cases seem to be due to packing strains. This confirms that

the coordination around the magnesium cation is substantially octahedral, as was expected for magnesium ion with s^2p^6 configuration. in the present compound. The nitrato group (Fig. 3) is not exactly planar (Table 6) and significant departures from trigonal symmetry are observed. The three N–O bond lengths are; 1.20, 1.25, 1.26 Å. This result is in contrast with that obtained for hexaquozinc nitrate

The average of the distances Mg-OH₂ in the literature is 2.06 Å as compared with $(Mg-OH_2)_{av} = 2.058$ (4 Å)

Table 5. Main interatomic distances and angles (with e.s.d.'s)

Asymmetric units

, ,	$\bar{x}, \frac{1}{2}$	$+y, \frac{3}{2}$	-z
<i>''</i>	$\overline{1}+x$,	у,	z
,,,	$1-x, \frac{1}{2}$	$+y, \frac{3}{2}$	<u> </u>
iv	$1 + x, \frac{1}{2}$	$-y, \frac{1}{2}$	+z

Hexaquomagnes	sium cation		
$Mg-OH_2(1)$ $Mg-OH_2(2)$	2·053 (5) Å 2·063 (6)	$H_2O(2)-Mg-OH_2(3)$ $H_2O(1)-Mg-OH_2(3)$	91·3 (3)° 90·7 (3)
Mg-OH ₂ (3) Mg-OH _{2av}	2·061 (7) 2·058 (4)	$H_2O(1) - Mg - OH_2(2)$	90.4 (3)
Nitrato anion			
N(4)-O(5)	1·264 (9) Å	O(5) - N(4) - O(6)	121·7 (6)°
N(4) - O(6)	1.196 (12)	O(6) - N(4) - O(7)	120.2(7)
N(4)-O(7)	1.252 (8)	O(7) - N(4) - O(5)	117.9 (8)
Hydrogen bond	s		
$H_2O(1)-O(6)$	2·797 (10) Å	$O(6) - H_2O(1) - Mg$	126·5 (3)°
$H_{2}O(1) - O(7'')$	2·749 (11)	$O(7'') - H_2O(1) - Mg$	107.1(3)
		$O(7'') - H_2O(1) - O(6)$	120.9 (3)
$H_2O(2)-O(7)$	2.888 (9)	$O(7) - H_2O(2) - Mg$	114.9 (3)
$H_2O(2) - O(5'')$	2.905 (9)	$O(5''') - H_2O(2) - Mg$	113.6 (3)
		$O(5''') - H_2O(2) - O(7)$	131.0 (3)
$H_2O(3)-O(6')$	2.765 (9)	$O(6') - H_2O(3) - Mg$	118.8 (3)
$H_{2}O(3) - O(5^{iv})$	2.890 (10)	$O(5^{iv}) - H_2O(3) - Mg$	142.5 (3)
,		$O(5^{iv}) - H_2O(3) - O(6')$	94.9 (3)

Table 6. Analysis of the planarity of the nitrato group

Equation of plane: 0.14173X' + 0.07964Y' + 0.98669Z' = 4.09505 with Z' normal to (x, y) and X = x.

Atoms N(4) O(5) O(6) O(7) -0.01686 +0.00734 +0.01266+0.01266⊿ Deviations from plane (Å) σ_{\perp} 0.00713 0.00789 0.01125 0.01054 $\Sigma \left(\frac{\Delta}{\sigma_{\perp}}\right)^2 = 9.17$ $\chi^{2}_{95\%} = 3.84$

Fig. 2. Hexaquomagnesium cation, $[Mg(OH_2)_6]^{2+}$. Bond lengths in Å.

Fig. 3. Nitrato anion, NO₃⁻. Bond lengths in Å.

6 N

Fig.4. Hydrogen bonds (Å) radiating from the hexaquomagnesium cation. Hollow cones indicate hydrogen bonds, filled cones other bonds.

Fig. 5. Hydrogen bonds (Å) pointing towards the oxygen atoms of the nitrato anion. Hollow cones indicate hydrogen bonds filled cones other bonds.

(Ferrari, Braibanti, Manotti Lanfredi & Tiripicchio, 1967) where the three N-O bonds are practically equal (1·242(9) Å). It is difficult to find an explanation for this different behaviour, if any, of the nitrato group. Neither are the results quoted in the literature all concordant because according to the results of Barclay, Sabine & Taylor (1965) the three non-equivalent N-O bonds are 1·21, 1·26, 1·26 Å, according to Taylor & Mueller (1965) 1·207, 1·271, 1·271 Å and 1·231, 1·260, 1·260 Å and according to Britton & Dunitz (1965) 1·202, 1·272, 1·309 Å, while according to Sass, Vidale & Donohue (1957) and Komiyama & Lingafelter (1964) the three N-O bonds are equivalent with 1·218 and 1·258 Å respectively.

The hexaquocations are bound to the nitrato groups by hydrogen bonds OH-O (Fig. 4). Each water molecule forms two hydrogen bonds. The hydrogen bonds are in the range 2.75-2.90 Å. Each oxygen atom of the nitrato group (Fig. 5) forms two hydrogen bonds with different water molecules.

The differences between the structures of hexaquozinc nitrate, orthorhombic (Ferrari, Braibanti, Manotti Lanfredi & Tiripicchio, 1967), and of hexaquomagnesium nitrate, monoclinic, are related to the different disposition of the nitrato groups with respect to the hexaquocation. Because the radii of the metal cations are practically equal, the actual origin of the different disposition of the nitrato groups can be sought in the hydrogen bonds radiating from the hexaquocations. The hydrogen bonds around magnesium are all very close to one plane containing the Mg-OH₂ bond. This is shown by the sum of the angles formed by each water molecule with magnesium and with the two oxygen atoms of nitrato groups which are bound, *via* hydrogen bonds, to the water molecule (Table 7). In the zinc compound only two pairs of hydrogen bonds are in the same plane as the zinc-water bond and these correspond to the shortest Zn-OH₂ distances. It seems reasonable to assume that the tetrahedral oxygen atom of the water molecule can be bound to the cations in two ways, either by ion-dipole interaction (*a*) or by coordinative bond (*b*):

Fig. 6. Layers in the structures of hexaquometal(II) nitrates: (a) (100) projection of hexaquomagnesium nitrate, (b) (001) projection of hexaquozinc nitrate (values in parenthesis are z coordinates, in Å, of the zinc atoms).

 Table 7. Metal-water bond lenghs and angles around each

 water molecule of the hexaquomagnesium and hexaquozinc cation

If this assumption is valid then the cation Zn^{2+} should present both types of bonding probably, implying 4s and 4p orbitals for the coordinative bonds, while Mg²⁺ should present only the ion-dipole interactions. As a consequence of this the arrangement of the nitrato groups is determined by the position of the hydrogen atoms. Apart from these different interactions between cation and water, followed by the arrangement of the nitrato groups, the two structures are very similar In both lattices layers formed by a zigzag succession of hexaquocations and nitrato groups can be recognized. The distances between cations within the layers are practically equal in the two compounds (Fig. 6). The packing, however, of these layers is slightly different: in the magnesium compound all the layers are equally oriented and shifted **c** with respect to one another while in the zinc compound the layer 2, which is the mirror image of layer 1 with respect to (001), is shifted $\frac{1}{2}a + \frac{1}{2}c$.

We wish to thank the Consiglio Nazionale delle Ricerche, Rome for financial aid.

References

- BARCLAY, G. A., SABINE, T. M. & TAYLOR, J. C. (1965). Acta Cryst. 19, 205.
- BAUR, W. H. (1964). Acta Cryst. 17, 1361.
- BRITTON, D. & DUNITZ, J. D. (1965). Acta Cryst. 19, 815.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- DARLOW, S. F. & COCHRAN, W. (1961). Acta Cryst. 14, 1250.
- FERRARI, A., BRAIBANTI, A., MANOTTI LANFREDI, A. M. & TIRIPICCHIO, A. (1967). Acta Cryst. 22, 240.
- JOHNSON, C. (1965). Acta Cryst. 18, 1004.
- KOMIYAMA, Y. & LINGAFELTER, E. C. (1964). Acta Cryst. 17, 1145.
- MARGULIS, T. N. & TEMPLETON, D. H. (1962). Z. Kristallogr. 117, 344.
- Mozzi, R. L. & Bekebrede, W. R. (1961). Acta Cryst. 14, 1296.
- NARDELLI, M. & FAVA, G. (1960). Ric. Sci. 30, 898.
- Nardelli, M., Fava, G. & Giraldi, G. (1962). Acta Cryst. 15, 227.
- NARDELLI, M., MUSATTI, A., DOMIANO, P. & ANDREETTI, G. (1965). *Ric. Sci.* 35 (II–A), 807.
- SASS, R. L., VIDALE, R. & DONOHUE, J. (1957). Acta Cryst. 10, 567.
- SASVARI, K. & JEFFREY, G. A. (1966). Acta Cryst. 20, 875.
- TAYLOR, J. C. & MUELLER, M. H. (1965). Acta Cryst. 19, 536.
- ZALKIN, A., RUBEN, H. & TEMPLETON, D. H. (1964). Acta Cryst. 17, 235.